新闻动态

已知二元一次方程:(1)x+y=4,(2)2x-y=2,(3)x-2y=1。请从这三个方程中选择你喜欢的两个方程,组成一

时间:2018-04-15 18:50  来源:网络整理  作者:admin  点击:

二元一次方程组的处理:
解方程的根底——方程式使具有特征
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c>0)

一、根除
1)顶替撤销法
移走裁员法的普通试图贿赂是:
选择每一复杂的畸变方程,生产量 y = ax +b 或 x = ay + B的身材;
②将y = ax + b 或 x = ay + B被另每一方程式所移走。,淘汰每一不稳定的,把另每一方程转变为一阶方程。;
一阶方程的解,求出 x 或 y 值;
④将已求出的 x 或 y 左右值被方程组说话中肯无论哪些方程式所替代。 = ax +b 或 x = ay + b),寻觅另每一未知的事物;
用插入成分设置两个不稳定的的值。,这执意二元一次方程的解。
例:解方程组 :
x+y=5①

6x+13y=89②
解:出生于(1)
x=5-y③
交换第三个。,得
6(5-y)+13y=89
即 y=59/7
将y=59/7交换为3,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 方程组的解
敝用替代每一不稳定的来处理左右成绩。,求解方程组的解的方式叫做化脓,短使牲口众多兵员法。

2)加减根除
加减法撤销元素的普通试图贿赂:
①在二元一次方程组中,倘若同样的不稳定的的系数同上(或相反),可以直截了当地减去(或加强)。,淘汰每一不稳定的;
②在二元一次方程组中,倘若箱子里没重要的人物,可选择每一针对性的数去乘方程的两边,使每一不稳定的的系数同上(或与EAC相反)。,
于是方程的两边被减去(或加强)。,淘汰每一不稳定的,一元一次方程;
一阶方程的解;
(4)的一阶方程的解的复杂方程移走,查明另每一未知的值;
用插入成分设置两个不稳定的的值。,这执意二元一次方程组的解。
例:解方程组:
x+y=9①

x-y=5②
解:①+②
2x=14
即 x=7
把x=7代入①,得
7+y=9
解,得:y=2
∴ x=7
y=2 方程组的解
由于方程的使具有特征,系数的完全的在,于是加法运算(或减去)这两个方程。,撤销不稳定的,该方程只能用每一不稳定的求出。。像这种解二元一次方程组的方式叫做加减根除,缩写词加减法。

3)混合应用的使牲口众多和顶替方式。
例:解方程组:
13x+14y=41①

14x+13y=40 ②
解:②-①得
x-y=-1
x=y-1 ③
把③ 顶替(1)
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
用3交换y=2
x=1
因而:x=1,y=2
奇形怪状:两方程总计和减法,每一x或每一y,这依从的再交换。。

二、代替
例:解方程组:
(x+5)+(y-4)=8

(x+5)-(y-4)=4
令x+5=m,y-4=n
原始方程可以写成
m+n=8
m-n=4
解得m=6,n=2
因而x+5=6,y-4=2
因而x=1,y=6
奇形怪状:这两个方程包括同上的代数有代理人。,作为成绩说话中肯x 5,Y-4以及其他,方程的稀释同样更衣后的材料原因。。

三、设置决定因素的方式
例:解方程组:
x:y=1:4

5x+6y=29
令x=t,y=4t
方程2可以写成:5t+6×4t=29
29t=29
t=1
因而x=1,y=4

四、图像法
二元一次方程组还可以用做图像的方式,马上相关联的二元一次方程改写成一次有或起作用的有代理人在同座标系内停下图像,
两条垂线的交点使调和即二元一次方程组的解。